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Spiral waves in a class of optical parametric oscillators
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The formation of three-armed rotating spiral waves is shown to occur in a spatially extended nonlinear
optical system with broken phase invariance. These new spatial structures are found in the mean-field model of
a class of optical parametric oscillators (3v→2v1v) in which the multistep process 2v5v1v breaks the
phase invariance of the down-conversion process. A parametrically-forced Ginzburg-Landau equation is de-
rived to explain the existence of phase-armed spiral waves.
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Spiral waves provide a beautiful and generic example
pattern formation in spatially extended systems in dive
fields of nonlinear sciences@1#. In nonlinear optics, since th
pioneering work by Coullet and co-workers@2#, a large
amount of work has been devoted to the study of opt
vortices@2–7#. Phase spiral patterns have been shown to
generic to the Maxwell-Bloch laser equations@2–4# and ob-
served in diverse laser systems@5–7#. Optical vortices and
spiral waves also arise in optical parametric processes
nonlinearx (2) medium@8–10#. Most of these previous stud
ies were focused on phase invariant systems, where s
waves manifest usually as phase defects for either scala
vectorial fields@11#. A different kind of spiral patterns may
occur in spatially extended systems with broken phase
variance, where domain walls separatingn different phase-
locked states may appear and tend to spiral@12#. Armed
spiral waves corresponding ton52, 3, and 4 have bee
shown to be rather generic in periodically forced oscillato
systems and found in the analysis of a forced Ginzbu
Landau equation@12–15#. The simplest and most studie
case corresponds ton52, where two kinds of domain walls
Ising and Bloch walls, may separate two equivalent sta
which differ each other by ap phase shift. In this case sta
tionary Ising walls may lose their stability to a pair of cou
terpropagating moving fronts~Bloch walls!, which may lead
to the formation of a two-armed rotating spiral wave@12#.
Observation of phase-locked armed spiral waves has b
reported in nematic liquid crystals subjected to a rotat
magnetic field forn52 @16# and recently in periodically
forced reaction-diffusion systems forn52, 3, and 4
@17,18#. In the context of nonlinear optics, Ising-like doma
walls connecting two phase states have been found in op
parametric oscillators~OPO! in the degenerate configuratio
@19#, whereas Bloch walls and Ising-Bloch transitions ha
been recently predicted for a type-II OPO with weak bi
fringence and dichroism@20#. So far, however, no exampl
of three-armed spiral waves has been reported yet for a
linear optical system.

In this Rapid Communication we provide an example o
nonlinear optical system with broken phase invariance wh
supports three-armed spiral waves. We consider a do
resonant OPO in a frequency configuration@21# that converts
an unresonated plane-wave pump field at frequency 3v into
signal and idler fields at frequenciesv and 2v, respectively.
Owing to the 1:2:3 ratios among the frequencies of intera
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ing fields, two distinct parametric processes may simu
neously occur in the nonlinearx (2) crystal: nondegenerat
parametric down-conversion of the pump field (3v5v
12v) and, as a multistep process, second-harmonic gen
tion (v1v52v) @22#. We assume that the nonlinear cryst
is phase-matched for the divide-by-three down-convers
process 3v→2v1v, i.e., k(3v)5k(2v)1k(v), whereas
the multistep parametric interaction,v1v52v, is assumed
to be weakly phase-matched with a phase mismatch par
eterDk[k(2v)22k(v) much larger thanp/ l , l being the
crystal length. The mean-field equations for the normaliz
amplitudesA1 and A2 of intracavity signal and idler fields
can be derived starting from the paraxial propagation w
equations for pump, signal and idler fields in presence of
multistep parametric process@22# after the introduction of
the single-longitudinal mode approximation and eliminati
the pump field from the dynamics as detailed, e.g., in R
@23#. This yields:

] tA15g1@2~11 iD1!A11 ia1¹2A11mA2* 1sA1* A2

2uA2u2A1#, ~1a!

] tA25g2F2~11 iD2!A21 ia2¹2A21mA1* 2
s

2
A1

2

2uA1u2A2G . ~1b!

In Eqs.~1!, m is proportional to the amplitude of the extern
pump field; (g1 ,g2), (a1 ,a2), and (D1 ,D2) are cavity de-
cay rates, diffraction and cavity detuning coefficients for s
nal and idler fields, respectively (g1a152g2a2 if signal and
idler are resonated in the same cavity!; ands is a dimension-
less parameter that measures the strength of the mult
parametric process. Its explicit expression readss
5(s2 /s1) f (2g1TR/3)21/2, whereTR is the cavity roundtrip
time, f [usin(Dkl/2)/(Dkl/2)u is the mismatching paramete
for the 2v5v1v process, ands1 ,s2 are proportional to
the elements of the second-order susceptibility tensor for
two parametric processes 3v52v1v and 2v5v1v, re-
spectively@22#. The order of magnitude ofs largely depends
on phase matching conditions; here we consider the cas
weak phase matching such thats is of order;1 or smaller.
As compared to the standard mean-field model of a non
©2001 The American Physical Society02-1
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generate OPO~see, e.g., Refs.@9,24#!, the multistep paramet
ric process introduces quadratic nonlinear interactions
break the phase invariance of the nondegenerate OPO.
trivial zero solutionA15A250 undergoes an Hopf bifurca
tion with frequencyvc5g1g2(D22D1)/(g11g2) to a spa-
tially homogeneous state for signal and idler fields atm
5m th[(11D2)1/2 when D.0, where D[(g1D1
1g2D2)/(g11g2) is the effective detuning parameter. F
s50, phase invariance is not broken and defects in the fo
of optical vortices, corresponding to phase singularities
the fields, can be observed. Frozen states of rotating s
waves may be found in numerical simulations of Eqs.~1!
when s50 andD.0 ~see Fig. 1!. These defect states ar
analogous to those found in the Maxwell-Bloch laser eq
tions @2# and are consistent with the reduction of the non
generate OPO equations to a complex Ginzburg-Lan
equation forD.0 @25#. For a nonvanishing value ofs, the
phase invariance of the OPO equations is broken, the o
of parametric oscillation becomes subcritical, and pha
locked homogeneous states may exist. These states are
by A1,25R1,2

1/2exp(if1,2), wheref15(u12u2)/3, f25(2u1

1u2)/3, sinu15(D1R122D2R2)/(m
2R1R2)

1/2, sinu252(D1R1

22D2R2)/(sR1R2
1/2), and R1 ,R2 can be found numerically

from the solutions of a quartic algebraic equation inr
5R2 /R1. The existence of the locked solution requiress
.sc , where the critical valuesc can be found numerically
by an analysis of the quartic equation; in particular, it tur
out thatsc50 for D15D2, i.e., whenvc50. For s,sc ,
the system does not admit of a phase-locked stationary s
tion, and a limit cycle is found. Fors.sc , two possible
solutions for (R1 ,R2) can be found from the quartic equa
tion; however, one branch is always unstable to perturbat
with zero transverse wave number~see Fig. 2!. The stability
of the other branch against perturbations with transve
wave numberkÞ0 can be tested by numerical evaluation
the eigenvalues in the linearized system obtained by lin
izing Eqs.~1! around the phase-locked state. In general,
found that the phase-locked homogeneous state is line
stable and no modulational instabilities could be found fo
wide range of parameter values. Notice that, for a giv
value of (R1 ,R2) in the stable branch,threedifferent values

FIG. 1. Spiral waves obtained from numerical simulations of
OPO equations~1! in case of phase invariance (s50). ~a!,~c! are
snapshots of the phase of signal field, and~b!,~d! are the corre-
sponding intensity patterns obtained form51.3 at timet510 000
@~a! and~b!# and form52 at timet56000@~c! and~d!#. The other
parameter values are:g151, g250.5, a151, a250.3, D1

50.45, andD250 (m th51.0440). The equations were integrat
using a pseudospectral technique in a square domain of siz
350 with periodic boundary conditions. A spatial grid of 12
3128 points was used; time stepdt50.02.
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for the phasesf1 and f2 of A1 and A2, which differ from
each other by multiplies of62p/3, are possible. This mean
that the system exhibits three different phase states, and
main walls connecting different phase states are poss
Numerical analysis of Eqs.~1! for s.sc shows that phase
locked states with different phases may emerge from nois
different spatial regions, which are connected by dom
walls that appear as dark lines in the field intensity. Dom
walls are generally moving and their dynamics seems to
governed by both curvature effects and by motion of
walls, perhaps due to nonvariational effects. Shrink or
pansion of domain walls, leading to a one dominant fin
phase state, is possible, however, more complex dynam
behaviors can be observed. In particular, stable three-ar
rotating spirals can be found in numerical simulations
Eqs. ~1! with a flat pump profile starting from a small ran
dom noise as an initial condition and assuming perio
boundary conditions~see Fig. 3!. Spiral waves are nucleate
spontaneously from noise and correspond to three dom
walls, that separate three different phase-locked states,
lescing in one point and rotating around this point. Spi
waves with different ordered phase states rotate in oppo
directions, and annihilation of counter-rotating spirals m
occur. In order to test the robustness of spiral waves un
more realistic finite pumping configurations, we consider

e

50

FIG. 2. Behavior of signal (R1) and idler (R2) intensities, ver-
sus the second-harmonic generation~SHG! parameters, corre-
sponding to the homogeneous phase-locked solutions of the O
equations. Continuous curves denote the stable branch, wherea
dashed ones the unstable branch. Parameter values are:g15g2

51, a151, a250.5, D151, D250.1, andm52. The locked so-
lutions exist fors.sc51.655, and three phases, which differ b
multiplies of 62p/3, are possible.

FIG. 3. Rotating three-phase spiral waves of the OPO equat
with broken phase invariance~flat pump field, periodic boundary
conditions!. The figure shows snapshots at timet59850 of the
phase@~a!#, intensity @~b!#, and real-part@~c!# of the signal field
A1(x,y,t). The SHG parameter iss52 (sc51.655); the other pa-
rameter values are the same as in Fig. 2. The computing windo
68368 on a 1283128 spatial grid; time step:dt50.01.
2-2
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the case of a super-Gaussian pump beam locally flat nea
cavity axis with fast decay at the boundary, i.e., we assum
m(x,y)5m0 exp@2(r/r0)

2m#, wherer is the transverse radia
coordinate,r 0 the pump beam size,m the order of the supe
Gaussian, andm0 the peak gain. Spontaneous formation
rotating spirals from noise are observed in this case as
~see Fig. 4!; remarkably, stable rotating spirals are fou
even for a simple Gaussian pump~see Fig. 5!, which may be
of major importance for an experimental observation of s
ral waves. Notice also that the circular symmetry of t
boundary helps the formation of large spiral structures
large aspect ratios~see Fig. 5!; similar boundary-enhance
spiraling was previously reported for both phase and int
sity spiral waves in other nonlinear optical systems@10,26#.
Well abovesc , the tendency of spiraling is prevented, a
more complex patterns, slowly evolving in time, are o
served~Fig. 6!. These structures do not arise from a mod
lational instability, instead they originate from the spontan
ous nucleation of bubbles near the domain walls, leading
characteristic holey tiling in the phase~see Fig. 6!. We did
not attempt to fully capture the complex dynamical scena
of Eqs.~1! in the whole parameter space; instead, we tried
understand the existence of three-armed rotating spiral w
by the derivation of an order parameter equation close
threshold forD.0 and for a small value of the symmetry

FIG. 4. Snapshots at successive times showing the forma
from noise of a rotating three-phase spiral wave for a sup
Gaussian pump field (m514,r 0510.45,m052). Parameter values
are as in Fig. 3. The box size in 22322 on a 1283128 spatial grid;
time step:dt50.01.

FIG. 5. Same as Fig. 4 but for a Gaussian pump (m51,r 0

527). Parameter values are the same as in Fig. 4 except fom0

52.3. The box size in 60360 on a 1283128 spatial grid; time step
dt50.01.
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breaking parameters, says;e. Since we are interested i
the phase-locked regime, we also assumed a small value
vc and of the same order of magnitude ass, i.e., we assume
D1;D2. The amplitude equation for Eqs.~1!, close to the
bifurcation pointm5m th , can be derived as a solvabilit
condition in a multiple-scale asymptotic expansion followi
the same technique as detailed in Refs.@24,25#. At leading
order, one finds that (A1 ,A2)T5@1,(12 iD)/m th#TF(x,y,t)
1O(e2), where the amplitudeF;e satisfies the following
equation:

] tF5aF1b¹2F1rF* 22duFu2F, ~2!

where we have set

a5
2g1g2m th~m2m th!

g11g21 i ~g12g2!D
1 i

g1g2~D22D1!

g11g2
, ~3a!

b5
ig1g2@a12a22 iD~a11a2!#

g11g21 i ~g12g2!D
, ~3b!

r5s
g1g2~123D224iD!

2m th@g11g21 i ~g12g2!D#
, ~3c!

d5
2g1g2

g11g21 i ~g12g2!D
. ~3d!

After the change of variablest→c1t, ¹2→(1/c2)¹2, F
→c3F, with c151/Re(a), c25Re(b)/Re(a), and uc3u2
5Re(a)/Re(d), Eq. ~2! reduces to the following parametr
cally forced complex Ginzburg-Landau equation:

] tF5~11 in!F1~11 ih!¹2F2~11 iu!uFu2F1pF* 2,
~4!

where n5Im(a)/Re(a), h5Im(b)/Re(b), u5Im(d)/
Re(d), andp5uru/@Re(a)Re(d)#1/2. In its present form, Eq.
~4! describes quite generally the dynamics of an oscillat
system close to an Hopf bifurcation when it is resonan
forced at a frequency 3v, wherev is its natural frequency
@12#. This equation is known to admit of three stable pha
states, which differ each other by multiplies of 2p/3, for p
.pc , where the critical value for phase locking is given b
pc5A2@(11u2)1/2(11n2)1/22(11nu)#1/2. Domain walls
connecting different phase states are in general moving
to nonvariational effects@15#, and three-armed rotating sp

n
r-

FIG. 6. Snapshots at timet56000 of intensity@~a! and~c!# and
phase@~b! and ~d!# of holey phase patterns forA1 in case of a flat
@~a! and~b!# and Gaussian@~c! and~d!# pump beam, as obtained fo
s56. The other parameter values are as in Figs. 3 and 5, excep
r 0519. The integration window is 20320; time stepdt50.005.
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rals, similar to the ones observed in our numerical simu
tions, are possible in the phase-locking regime@12,15#. In
addition, it is remarkable that these structures are rob
against noise and persist for spatially inhomogeneous for
@14#. Spiral waves observed in our numerical simulatio
thus bear a close connection with phase-locked armed s
waves generally observed in resonantly forced oscillat
systems. More complex patterns, such as those observ
large values of the symmetry-breaking parameters ~see Fig.
6!, are not, however, described by the reduced order par
eter equation~4!, and seem peculiar to the original OP
equations.
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In conclusion, three-armed rotating spiral waves ha
been predicted to exist in a nonlinear optical system w
broken phase invariance. We considered an OPO for the
quency down-conversion 3v→2v1v in which a weakly
phase-matched multistep parametric process allows for m
tistability of three different phase states. The spiral wav
supported by this system are rather distinct from other ki
of phase and intensity spirals previously found in nonline
optics @2–4,8,10#; instead they bear a close connection w
spiral waves found in parametrically forced magnetic a
chemical systems@12,17,18#.
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vani Ricercatori’’ and by the ESF Network PHASE.
tt.

-

A

@1# M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@2# P. Coullet, L. Gil, and F. Rocca, Opt. Commun.73, 403
~1989!.

@3# L. Gil, Phys. Rev. Lett.70, 162 ~1993!.
@4# D. Yu, W. Lu, and R. G. Harrison, Phys. Rev. Lett.77, 5051

~1996!.
@5# F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Resid

Phys. Rev. Lett.67, 3749~1991!.
@6# C. O. Weiss, Phys. Rep.219, 311 ~1992!.
@7# K. Staliunas, G. Slekys, and C. O. Weiss, Phys. Rev. Lett.79,

2658 ~1997!.
@8# K. Staliunas, Opt. Commun.91, 82 ~1992!.
@9# V. J. Sanchez-Morcillo, E. Roldan, G. J. de Valcarcel, and

Staliunas, Phys. Rev. A56, 3237~1997!.
@10# P. Lodahl, M. Bache, and M. Saffman, Phys. Rev. Lett.85,

4506 ~2000!.
@11# A notable exception is the analysis of Ref.@10#, where inten-

sity spiral waves are observed in an internally pumped opt
parametric oscillator as a result of a secondary instability.

@12# P. Coullet and K. Emilsson, Physica D61, 119 ~1992!.
@13# C. Elphick, A. Hagberg, and E. Meron, Phys. Rev. Lett.80,

5007 ~1998!.
@14# C. J. Hemming and R. Kapral, Chaos10, 720 ~2000!.
i,

.

l

@15# R. Gallego, D. Walgraef, M. San Miguel, and R. Toral~un-
published!.

@16# T. Frisch, S. Rica, P. Coullet, and J. M. Gilli, Phys. Rev. Le
72, 1471~1994!.

@17# A. L. Lin, M. Bertram, K. Martinez, H. L. Swinney, A. Arde-
lea, and G. F. Carey, Phys. Rev. Lett.84, 4240~2000!.

@18# A. L. Lin, A. Hagberg, A. Ardelea, M. Bertram, H. L. Swin
ney, and E. Meron, Phys. Rev. E62, 3790~2000!.

@19# S. Trillo, M. Haelterman, and A. Sheppard, Opt. Lett.22, 970
~1997!.

@20# G. Izus, M. San Miguel, and M. Santagiustina, Opt. Lett.25,
1454 ~2000!.

@21# See, for instance, A. Douillet and J.-J. Zondy, Opt. Lett.23,
1259 ~1998!.

@22# K. Koynov and S. Saltiel, Opt. Commun.152, 96 ~1998!; Y. S.
Kivshar, T. J. Alexander, and S. Saltiel, Opt. Lett.24, 759
~1999!.

@23# S. Longhi, J. Mod. Opt.43, 1089 ~1996!; P. Lodahl and M.
Saffman, Phys. Rev. A60, 3251~1999!.

@24# S. Longhi, Phys. Rev. A53, 4488~1996!.
@25# Z. H. Musslimani, Physica A249, 141 ~1998!.
@26# I. Aranson, D. Hockheiser, and J. V. Moloney, Phys. Rev.

55, 3173~1997!.
2-4


